Struct openssl::bn::BigNum
[−]
[src]
pub struct BigNum(_);
An owned, signed, arbitrary-precision integer.
BigNum
provides wrappers around OpenSSL's checked arithmetic functions.
Additionally, it implements the standard operators (std::ops
), which
perform unchecked arithmetic, unwrapping the returned Result
of the
checked operations.
Methods
impl BigNum
[src]
fn new() -> Result<BigNum, ErrorStack>
Creates a new BigNum
with the value 0.
fn new_from(n: c_ulong) -> Result<BigNum, ErrorStack>
Creates a new BigNum
with the given value.
fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack>
Creates a BigNum
from a decimal string.
fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack>
Creates a BigNum
from a hexadecimal string.
unsafe fn from_ptr(handle: *mut BIGNUM) -> BigNum
fn new_from_slice(n: &[u8]) -> Result<BigNum, ErrorStack>
Creates a new BigNum
from an unsigned, big-endian encoded number of arbitrary length.
let bignum = BigNum::new_from_slice(&[0x12, 0x00, 0x34]).unwrap(); assert_eq!(bignum, BigNum::new_from(0x120034).unwrap());
fn checked_generate_prime(bits: i32, safe: bool, add: Option<&BigNum>, rem: Option<&BigNum>) -> Result<BigNum, ErrorStack>
Generates a prime number.
Parameters
bits
: The length of the prime in bits (lower bound).safe
: If true, returns a "safe" primep
so that(p-1)/2
is also prime.add
/rem
: Ifadd
is set toSome(add)
,p % add == rem
will hold, wherep
is the generated prime andrem
is1
if not specified (None
).
fn checked_new_random(bits: i32, prop: RNGProperty, odd: bool) -> Result<BigNum, ErrorStack>
Generates a cryptographically strong pseudo-random BigNum
.
Parameters
bits
: Length of the number in bits.prop
: The desired properties of the number.odd
: Iftrue
, the generated number will be odd.
fn checked_new_pseudo_random(bits: i32, prop: RNGProperty, odd: bool) -> Result<BigNum, ErrorStack>
The cryptographically weak counterpart to checked_new_random
.
Methods from Deref<Target=BigNumRef<'static>>
fn checked_sqr(&self) -> Result<BigNum, ErrorStack>
Returns the square of self
.
let ref n = BigNum::new_from(10).unwrap(); let squared = BigNum::new_from(100).unwrap(); assert_eq!(n.checked_sqr().unwrap(), squared); assert_eq!(n * n, squared);
fn checked_nnmod(&self, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Returns the unsigned remainder of the division self / n
.
fn checked_mod_add(&self, a: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Equivalent to (self + a) mod n
.
let ref s = BigNum::new_from(10).unwrap(); let ref a = BigNum::new_from(20).unwrap(); let ref n = BigNum::new_from(29).unwrap(); let result = BigNum::new_from(1).unwrap(); assert_eq!(s.checked_mod_add(a, n).unwrap(), result);
fn checked_mod_sub(&self, a: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Equivalent to (self - a) mod n
.
fn checked_mod_mul(&self, a: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Equivalent to (self * a) mod n
.
fn checked_mod_sqr(&self, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Equivalent to self² mod n
.
fn checked_exp(&self, p: &BigNumRef) -> Result<BigNum, ErrorStack>
Raises self
to the p
th power.
fn checked_mod_exp(&self, p: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Equivalent to self.checked_exp(p) mod n
.
fn checked_mod_inv(&self, n: &BigNumRef) -> Result<BigNum, ErrorStack>
Calculates the modular multiplicative inverse of self
modulo n
, that is, an integer r
such that (self * r) % n == 1
.
fn add_word(&mut self, w: c_ulong) -> Result<(), ErrorStack>
Add an unsigned long
to self
. This is more efficient than adding a BigNum
.
fn sub_word(&mut self, w: c_ulong) -> Result<(), ErrorStack>
fn mul_word(&mut self, w: c_ulong) -> Result<(), ErrorStack>
fn div_word(&mut self, w: c_ulong) -> Result<c_ulong, ErrorStack>
fn mod_word(&self, w: c_ulong) -> Result<c_ulong, ErrorStack>
fn checked_gcd(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack>
Computes the greatest common denominator of self
and a
.
fn is_prime(&self, checks: i32) -> Result<bool, ErrorStack>
Checks whether self
is prime.
Performs a Miller-Rabin probabilistic primality test with checks
iterations.
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
fn is_prime_fast(&self, checks: i32, do_trial_division: bool) -> Result<bool, ErrorStack>
Checks whether self
is prime with optional trial division.
If do_trial_division
is true
, first performs trial division by a number of small primes.
Then, like is_prime
, performs a Miller-Rabin probabilistic primality test with checks
iterations.
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
fn checked_rand_in_range(&self) -> Result<BigNum, ErrorStack>
Generates a cryptographically strong pseudo-random BigNum
r
in the range
0 <= r < self
.
fn checked_pseudo_rand_in_range(&self) -> Result<BigNum, ErrorStack>
The cryptographically weak counterpart to checked_rand_in_range
.
fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack>
Sets bit n
. Equivalent to self |= (1 << n)
.
When setting a bit outside of self
, it is expanded.
fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack>
Clears bit n
, setting it to 0. Equivalent to self &= ~(1 << n)
.
When clearing a bit outside of self
, an error is returned.
fn is_bit_set(&self, n: i32) -> bool
Returns true
if the n
th bit of self
is set to 1, false
otherwise.
fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack>
Truncates self
to the lowest n
bits.
An error occurs if self
is already shorter than n
bits.
fn checked_shl1(&self) -> Result<BigNum, ErrorStack>
Returns self
, shifted left by 1 bit. self
may be negative.
let ref s = BigNum::new_from(0b0100).unwrap(); let result = BigNum::new_from(0b1000).unwrap(); assert_eq!(s.checked_shl1().unwrap(), result);
let ref s = -BigNum::new_from(8).unwrap(); let result = -BigNum::new_from(16).unwrap(); // (-8) << 1 == -16 assert_eq!(s.checked_shl1().unwrap(), result);
fn checked_shr1(&self) -> Result<BigNum, ErrorStack>
Returns self
, shifted right by 1 bit. self
may be negative.
fn checked_add(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack>
fn checked_sub(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack>
fn checked_mul(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack>
fn checked_div(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack>
fn checked_mod(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack>
fn checked_shl(&self, a: &i32) -> Result<BigNum, ErrorStack>
fn checked_shr(&self, a: &i32) -> Result<BigNum, ErrorStack>
fn to_owned(&self) -> Result<BigNum, ErrorStack>
fn negate(&mut self)
Inverts the sign of self
.
let mut s = BigNum::new_from(8).unwrap(); s.negate(); assert_eq!(s, -BigNum::new_from(8).unwrap()); s.negate(); assert_eq!(s, BigNum::new_from(8).unwrap());
fn abs_cmp(&self, oth: &BigNumRef) -> Ordering
Compare the absolute values of self
and oth
.
let s = -BigNum::new_from(8).unwrap(); let o = BigNum::new_from(8).unwrap(); assert_eq!(s.abs_cmp(&o), Ordering::Equal);
fn is_negative(&self) -> bool
fn num_bits(&self) -> i32
Returns the number of significant bits in self
.
fn num_bytes(&self) -> i32
Returns the size of self
in bytes.
fn as_ptr(&self) -> *mut BIGNUM
fn to_vec(&self) -> Vec<u8>
Returns a big-endian byte vector representation of the absolute value of self
.
self
can be recreated by using new_from_slice
.
let s = -BigNum::new_from(4543).unwrap(); let r = BigNum::new_from(4543).unwrap(); let s_vec = s.to_vec(); assert_eq!(BigNum::new_from_slice(&s_vec).unwrap(), r);
fn to_dec_str(&self) -> String
Returns a decimal string representation of self
.
let s = -BigNum::new_from(12345).unwrap(); assert_eq!(s.to_dec_str(), "-12345");
fn to_hex_str(&self) -> String
Returns a hexadecimal string representation of self
.
let s = -BigNum::new_from(0x99ff).unwrap(); assert_eq!(s.to_hex_str(), "-99FF");
Trait Implementations
impl Drop for BigNum
[src]
impl Deref for BigNum
[src]
type Target = BigNumRef<'static>
The resulting type after dereferencing
fn deref(&self) -> &BigNumRef<'static>
The method called to dereference a value
impl DerefMut for BigNum
[src]
impl AsRef<BigNumRef<'static>> for BigNum
[src]
impl Debug for BigNum
[src]
impl Display for BigNum
[src]
impl PartialEq for BigNum
[src]
fn eq(&self, oth: &BigNum) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0
This method tests for !=
.
impl<'a> PartialEq<BigNumRef<'a>> for BigNum
[src]
fn eq(&self, oth: &BigNumRef) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0
This method tests for !=
.
impl Eq for BigNum
[src]
impl PartialOrd for BigNum
[src]
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool
1.0.0
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &Rhs) -> bool
1.0.0
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, other: &Rhs) -> bool
1.0.0
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, other: &Rhs) -> bool
1.0.0
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl<'a> PartialOrd<BigNumRef<'a>> for BigNum
[src]
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &Rhs) -> bool
1.0.0
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &Rhs) -> bool
1.0.0
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, other: &Rhs) -> bool
1.0.0
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, other: &Rhs) -> bool
1.0.0
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl Ord for BigNum
[src]
fn cmp(&self, oth: &BigNum) -> Ordering
This method returns an Ordering
between self
and other
. Read more
impl<'a, 'b> Sub<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the -
operator
fn sub(self, oth: &BigNum) -> BigNum
The method for the -
operator
impl<'a, 'b> Sub<&'b BigNumRef<'b>> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the -
operator
fn sub(self, oth: &BigNumRef) -> BigNum
The method for the -
operator
impl<'a, 'b> Mul<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the *
operator
fn mul(self, oth: &BigNum) -> BigNum
The method for the *
operator
impl<'a, 'b> Mul<&'b BigNumRef<'b>> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the *
operator
fn mul(self, oth: &BigNumRef) -> BigNum
The method for the *
operator
impl<'a, 'b> Div<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the /
operator
fn div(self, oth: &'b BigNum) -> BigNum
The method for the /
operator
impl<'a, 'b> Div<&'b BigNumRef<'b>> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the /
operator
fn div(self, oth: &'b BigNumRef<'b>) -> BigNum
The method for the /
operator
impl<'a, 'b> Rem<&'b BigNumRef<'b>> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the %
operator
fn rem(self, oth: &'b BigNumRef<'b>) -> BigNum
The method for the %
operator
impl<'a, 'b> Rem<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the %
operator
fn rem(self, oth: &'b BigNum) -> BigNum
The method for the %
operator
impl<'a> Shl<i32> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the <<
operator
fn shl(self, n: i32) -> BigNum
The method for the <<
operator
impl<'a> Shr<i32> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the >>
operator
fn shr(self, n: i32) -> BigNum
The method for the >>
operator
impl<'a> Neg for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the -
operator
fn neg(self) -> BigNum
The method for the unary -
operator